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The electromagnetic virtual cloud of the ground-state hydrogen 
atom-a quantum field theory approach 
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Institute for Theoretical Physics, Polish Academy of Sciences, A1 Lotnikow 32/46, 02-668 
Warsaw, Poland 

Received 16 February 1990 

Abstract. The properties of the Virtual cloud around the hydrogen atom in the ground state 
are studied with the use of quantum field theory methods. The relativistic expression for 
the electromagnetic energy density around the atom, with the electron spin taken into 
account, is obtained. The distribution of the angular momentum contained in the cloud 
and the self-interaction kernel for the electrons bound in atom are also investigated. 

1. Introduction 

One of the known and interesting properties of a quantum system is fluctuations giving 
rise to phenomena that are absent in classical physics. In quantum field theory, for 
instance, the source interacting with a certain field can surround itself with its quanta, 
creating in that way a cloud of virtual particles with definite spatial distribution 
dependent on the features of the source. This source may be, for example, a baryon 
surrounding itself with a meson cloud, it may also be a charged particle emitting and 
absorbing photons. Recently much work has been devoted to the description and 
understanding of the properties of such clouds in various phsyical situations 
(Compagno et a1 1983, 1987, Passante et a1 1985, Passante and Power 1987, Persico 
and Power 1986, Power and Thirunamachandran 1983, 1984a, b, Henley and Thirring 
1962, Peeters and Devreese 1983, Theberge et a1 1980, 1981). A matter of particular 
interest was the spatial distribution of the virtual photon cloud of the hydrogen atom 
(Compagno et a1 1983, 1987, Passante et a1 1985, Passante and Power 1987, Persico 
and Power 1986). The virtual cloud arises even if atom (or a source in general) is in 
its ground state; responsible for it are those terms in Hamiltonian that admit excitations 
of the source with simultaneous emission of particles. An atom can, therefore, be 
spontaneously excited, for instance to the 2p state, emitting a photon. Such a fluctuation 
leads to the emission of the off-mass-shell photon but if it lasts a sufficiently short time 
(i.e. the photon is immediately reabsorbed and the atom comes back to the former 
state) is allowed by the Heisenberg uncertainty principle: 

h E A t  2 h. (1) 
Phenomena of that kind are well known and manifest themselves through, for 

example, van der Waals forces, where virtual photons are exchanged between two 
atoms. For a baryon mentioned above, this process looks similar. A proton or neutron 
can emit a pion, becoming simultaneously a higher resonance, for instance A, and 
reabsorb it after a short time. 

0305-4470/90/214911+ 13S03.50 @ 1990 IOP Publishing Ltd 491 1 



4912 T Radoiycki 

In the present work we will concentrate on a description of the photon cloud in 
the ground state of the hydrogen atom. What physical quantity can be chosen to 
characterize such a cloud? Undoubtedly it has to be a quantity that is at least bilinear 
in the fields since only then can the quantum nature of the source manifest itself (if 
we are not interested in radiative corrections which come into play for quantities linear 
in the fields as well). A suitable quantity for this study is the electromagnetic energy 
density distribution in the space around the atom: ( i ( E ( x ) * + B ( x ) ’ ) ) .  This was in fact 
the basic quantity considered in the quoted works. It was found for the non-relativistic, 
quantum mechanical atom interacting with the quantized electromagnetic field. The 
Hamiltonian of that system has the form 

H =  (’ - e A ) 2 +  V(r)  
2m 

where 

and ay)’ ( a y ’ )  are creation (annihilation) operators for the photons of momentum k 
and polarization A. 

What we would like to do, however, and this is the main goal of this work, is to 
carry out all these calculations entirely in the language of quantum field theory. We 
have no intention of also constructing in such a way the bound state of proton and 
electron-we consider from the very beginning relativistic quantum electrodynamics 
in the external Coulomb potential (the corresponding Lagrangian is written down 
explicitly in section 2-formula (4)). The use of quantum field theoretical techniques 
permits us to easily find other quantities characterizing the virtual cloud. It also admits 
generalizations to various similar problems not dealt with in the present work. What 
we are looking for, is, therefore, the expression 

( l l i ( E ( r ,  t I 2 + B ( r ,  t)’)Il) 

where 11) is the physical ground state of the system. If we make use of the eigenbasis 
of the Hamiltonian in which the electron-photon interaction term was turned off, the 
state 11) would be decomposed onto free atomic states with various numbers of photons, 
as given by the ordinary perturbation calculation. This is actually the case dealt with 
in works based on the Hamiltonian ( 2 )  (Compagno et a1 1983, Passante et a1 1985, 
Passante and Power 1987). For us, however, this decomposition is of little avail-we 
prefer rather to employ the perturbation methods of field theory, leading to Green 
functions and Feynman diagrams. It will be shown that the average value that we are 
interested in can actually be found with the use of scattering methods. It is very 
convenient to transfer our problem into the most elaborated domain in quantum field 
theory. We get ordinary transition amplitudes and Green functions, which can be dealt 
with by well known techniques. All this constitutes the contents of section 2. In section 
3 we find another quantity characterizing the cloud-the angular momentum density 
distribution: ( r  x ( E  x B ) ) .  Fortunately, the field theoretical method we have applied 
is universal enough to allow us to obtain, with relatively little expenditure of work, 
results for all quantities bilinear in the potentials A once the first one has been found, 
In section 4 we calculate the full energy contained in the virtual cloud and find the 
self-interaction kernel for the electron bound as an atom. 
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2. The electromagnetic energy density distribution 

i n  this section we would like to concentrate on the field theoretic decription of the 
electromagnetic energy density distribution in the space around the hydrogen atom as 
a possible characteristic of the virtual cloud. The very fact of the existence of such a 
cloud for a neutral source, like a hydrogen atom, is closely related to its quantum 
character and, consequently, to its fluctuations-to the continuous processes of emission 
and absorption of virtual photons. In the system consisting of the atom and the 
electromagnetic field, as soon as the interaction between the electron and the field A 
is turned on, a new ground state appears. It is no longer the ground state of the atom 
alone, which written in the unperturbed product basis would have the form /ls)010), 
but the ground state of the whole coupled system, which mixes the electron and photon 
degrees of freedom and which in the above basis assumes the form of an infinite series. 
For such a ground state the expectation values of operators being certain combinations 
of fields A ,  will in general not vanish in the space around the atom. We mean here, 
naturally, the operators that are already normally ordered-after the subtraction of 
the vacuum contribution, which would give non-zero values even for empty space. 
Before passing onto concrete calculations of such a quantity-(f(E(x)’+ B(x)’))-we 
will write down the Lagrangian of the theory we will deal with here. It is the standard 
Lagrangian of relativistic quantum electrodynamics in the presence of an external 
Coulomb potential: 

9 ( x )  =q( iypd ,  - m - y o V ( x ) ) 9 - e ~ y p A , 9 + + A w ( d ” d , g , , - ( 1  -A)d,d,)A” (4) 

where 

Za 
V ( r )  = --, 

r 

and A is a gauge-fixing parameter. 
We denote by the symbol 11) the one-electron ground state of that system. The 

quantity we want to find is simply ( l l i ( E ( r ,  t ) ’ + B ( r ,  t )*)11) .  The operator + ( E ( r ,  t ) ’ +  
B(r ,  t ) ’ )  is, however, singular since it is a product of two field operators in the same 
spacetime point. Evaluating this expression directly, we would get infinity just because 
we neglected to subtract the vacuum contribution. Therefore, we first have to split the 
spacetime arguments of the fields ( x - y ) ,  as one usually does in such a case. Next 
we subtract the vacuum expectation value of the same operator, obtaining in that way 
a well defined quantity, and finally we put y = x .  Our basic object will be then: 

( 6 )  I f i Y ( X ,  Y )  = ( l l ~ p ‘ ( x ) d ” ( Y ) / l )  - ( f iIA’”(x)A”(Y)lf i )  

where 

d r ( x )  = A $ ( x ) + A @ ( x )  ( 7 )  

and A $ ( x )  is the classical Coulomb field coming from the proton, whereas A+’(x) is 
the quantum field. The differentiations leading to fields E and B will be performed later. 

The splitting of spacetime points is carried out in such a way that x o >  y o .  We may 
then, without altering anything in our expression (6), insert the chronological ordering 
operator. 

d ’ ( X ) . P p ” ( Y )  + T ( d ’ ” ( X ) d ” ( Y ) ) .  
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If we now recall that the ground state obeys 

11) = Jl in)  = Ilout) 

where the asymptotic states 

11iO”t) = 11% 0 3  (9) 

are created from the vacuum with the creation operator for a physical dressed 1s 
electron + b:fclO, 0) (the second 0 stands for the photon vacuum), we arrive at the 
expression known from the scattering process: 

I””  (x, y ) = (1 s, Oout/T( d” (x )  d ” (y ) ) I  1 s, Oin) - (Rout/T( A” (x)  A” (y))lRin>. (10) 

We have, then, transformed our problem into that of evaluating the S-matrix element 
for the scattering of a photon on the ground state hydrogen atom. The subsequent way 
of proceeding is already clear: with the aid of the reduction formulae (Bjorken and 
Drell 1965, Itzykson and Zuber 1978), one has to form the vacuum expectation values 
that are the appropriate Green functions. If we recall that d” = A,”, + A” we see that 
there are three contributions to I*”.  We will start with I:” that corresponds to the 
most interesting situation, when both fields A in (10) are quantum fields. The determina- 
tion of the remaining terms If;” and II;; does not present any difficulties: 

I:”(x, y )  = (Is, OoutlT(A”(x)A”(y))lls, Oin) - (RoutlT(A*(x)A”(y))lnin). (11) 

The ‘zero point’ term has been included in I?” as this is the only contribtuion that 
can lead to the problems with ill defined operators; here we have the product of two 
quantum fields. Now we will make use of 

b:i”= d3x ~ ‘ , , , ( ~ ) y ~ T ~ ~ ) ( x )  (12) 5 
r 

b ,  - d3x ~ \ + ’ ( x ) y o Y O u t ( x )  
Out- J 

where Y, is a suitable ground state wavefunction and Yin (Tout) are the electron field 
operators. For our purpose-the calculations in the lowest order of perturbation 
theory-it will turn out quite sufficient to use as Y, the standard wavefunction of the 
hydrogen atom from quantum mechanics. Now, acting as one usually does while 
deriving the reduction formulae (Bjorken and Drell 1965; Itzykson and Zuber 1978) 
we obtain, at first, the disconnected part (Oout\T(A”(x)A”(y))lOin) which approxi- 
mately-to order et-cancels the zero-point contribution. The cancellation is not exact 
(there remains some O(e4) part) because 10) is not the same as In), the former being 
the vacuum state in the presence of external Coulomb potential. The diagram m, 
for instance, is different in the two cases, since the electron propagators in the internal 
loop are different. However, all these corrections come into play at order e4, which 
we we will not be interested in. 

For the connected part, essential for us, we obtain 

I?”(x, y )  = - d4w d4z ~ , ( w ) ( d , + i ( m  + y o V ) )  

x (OoutlT(Y(w)q(z)A”(x)A’(y))lOin)(~= - i ( m +  yoV))Y,(z) .  (14) 

5 
The arrow over the derivative (JZ) means that it acts to the left. 
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Figure 1. Feynman diagrams that contribute to (14).  
The full line stands for electron and the broken one 
for the proton. - - - - - -  

x Figure 2. The diagrams contributing to 1;” and I f i y .  

Ordinary perturbation calculation now leads to two Feynman diagrams, the same 
as for the scattering process. They are shown in figure 1. 

In principle we do not follow the quantum calculation for the proton; since there 
are, however, Coulomb photons coming from the nucleus (figure 2) we decided, for 
clarity, to draw the proton line too: 

d 4 w d 4 z @ , ( w ) y F S ~ ( w ,  z ) y ” q , ( z ) A F ( x -  w ) A F ( y - z ) +  

Sg is the Feynman electron propagator in the Coulomb potential V :  

(id, - m - y ’ ~ ( x ) ) ~ E ( x ,  w )  = ~ ‘ ~ ’ ( x  - w). (16) 

The photon propagator is taken here in the Feynman gauge ( A  = l ) ,  chosen for 
reasons of simplicity. It is then expressed in the form 

where A F (  x )  has the following coordinate space representation: 

-i 1 
A ‘ ( x ) = -  - 

4 ~ ’  x 2  - is 

We would like to emphasize here that in the course of our calculations there will 
be no need to pass on to the Fourier representation; all the work is done in coordinate 
space with A ‘ ( x )  defined above. We do not know the explicit form for the propagator 
SE(w, z ) ,  but one can always use the representation in the form of a sum over the 
appropriate atomic states: 

where + and - signify positive and negative energy states. As a consequence of this 
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we obtain 

IP”(X, y)  = I;:(x, y )  + Z?-”(X, y )  
r 

= e 2  J d4w d4~~~O(wo-~O)~l(~)yl*?jlf)(w)~~~~(~)yY?,(~) 
n 

x AF(x - w)A‘(y - Z )  

r 

{::;I x AF(x - w)AF(y - Z) + 

The symbol 1s in the above formulae signifies the sum over discrete and integral over 
continuous quantum numbers. What remains now is to perform the integrals over wo 
and zo.  As the time dependence of the functions Y m  is known-they are stationary 
solutions of the atomic Dirac equation-these integrals are simple contour integrals 
with poles situated as is required by the Feynman propagators AF. Leaving unexecuted 
the integrals over the spatial distribution of the source, we get 

The integral over k comes from the Fourier representation of 
function O(x): 

(21) 

the Heaviside step 

At this point we would like to stress the simplicity and the clarity of this method. 
The formula (21) is the most complicated one that arises in the course ofthe calculations. 

The results for parts 1:” and I:’;, which correspond to the diagrams of figure 2, 
put aside so far, are given here without any calculation: 

In this way we have obtained all the parts of our expression: 

I l* ‘“=I ; :+I f -”+Iy1“+  I ; ; .  (25) 
To proceed with ( 2 5 )  we must now make some approximations. We would like to 

separate x from w and y from z in the formula for I ? ” .  Y, is a localized state, so the 
integrations over w and z are spread only over the region of order a,-the Bohr radius. 
From now on we will assume that the observation point x (and y )  is far from the atom. 
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So we have 1x1 >> ao(=w)  and lyl>> ao(=z). We do not claim to find the energy density 
inside the atom. At the same time we always have to keep in mind that there is also 
the relation that the wavelengths of characteristic photons are much greater than the 
size of the source: a,<< A. We then make the multipolar expansion. This is a lengthy 
but elementary calculation which we skip here. It consists simply in the Taylor 
expansion of (21) with respect to w and z. The terms contain two small parameters: 
ao/r (i.e. w/x and z/y)  and ao/Anl. We reject all higher (non-dipole transitions and 
take the leading term in the a o / A n ,  expansion. This is the usual approach when 
investigating, for example, multipolar radiation. We are left then with the objects 
(llr'l n)( nlrjl 1).  From now on we use, for brevity, the symbol In) to denote the quantum 
mechanical atomic states 9,,. We hope it will not cause confusion with field theory 
states, for instance 11). 

After the above approximation has been made we have to calculate the derivatives 
leading to the electric and magnetic fields: d'AodiAo, diAodoAi, doAidoA' for E' and 
(curl A)* for B2 and then to evaluate the k integral. This gives the integral sine and 
the integral cosine functions. In that manner we obtain the following formula for E': 

x [ (- 2 ( S I k  +3r^kr^') -- 2&, ( 3 ~ 5 ' ~  + ikr^')+- 2W4,l ( S I k  - r^*r^'))f(2wnIr) 

I 
r6 r4 r2 

(26) 

CO3 1 r 
+ ( ~ ( 3 S ' k + r ^ * r ^ ' ) - , ( S ' * - r ^ k r ^ ' )  4W;i g(2wn,r)--+(6'k-iki') 

r 

where 

CS' = IS -cl 

wnl = IE, - Ell = [ 
n = 1 excluded 

n n +  n -  

En - E ,  for positive-energy states 
El - En for negative-energy states. 

The well known (Abramowitz and Stegun 1964) functions f ( z )  and g ( z )  are 

(27) 
(28) 

expressed as follows: 
f (  z )  = ci( z) sin( z )  - si( z) cos( z) 
g ( z )  = -ci(z) cos(z) - s i (z )  sin(z) 

where we use the definitions 

d t  

ci(z) = jm t dt. 
' cos( t )  

In (26), It;" and ZK: are already taken into account. They have cancelled the 
monopole term of our multipolar expansion, as it should be for a neutral object, which 
the hydrogen atom is. In the same manner we get the magnetic energy density: 
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The last term of (31) is a magnetostatic energy coming from the spin magnetic moment 
of the electron. For the total energy density contained in the cloud we obtain: 

where we have disregarded the magnetostatic energy as we are interested here only in 
the virtual cloud effects. We disregard it also in what follows. The formula (32) 
constitutes an answer to the question asked at the beginning: what is the photon cloud 
around the hydrogen atom in the ground state like? This formula, however, is not 
quite legible as one cannot see clearly the r dependence. We would like to separate a 
quantity that characterizes the atom and to explicitly find the external r dependence. 
The summation over the atomic states, which would lead to this goal, cannot, however, 
be performed; one can instead make use of the well known behaviour of the functions 
f and g for big arguments (Abramowitz and Stegun 1964): 

Large arguments (i.e. r >> l /wnl)  mean that we look at the atom from the so-called 
wave zone (far zone). We are at distances much larger than the wavelength of charac- 
teristic photons. Keeping only leading terms after having inserted the expansions (33) 
and (34) into the formulae (26), (31)  and (32) we have: 

The above formulae constitute relativistic, bispinor generalization of results already 
obtained in the language of non-relativistic QED. (Passante et al 1985, Passante and 
Power 1987, Persico and Power 1986). If we had to do with a spherically symmetric 
atom we would have 

1 7e2 1 1 
FZ 4 7  24r2  :' E, - E ,  (1 lx ln) (nlx l l )~ .  (39) f(B*(r))..syv = -- - - 

Apart from the factor 1 / 4 ~  (coming from a different choice of electromagnetic units) 
and the relativistic character of the In), these are exactly formulae already obtained 
in Passante and Power (1987). 
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What we have found is some additional non-trivial angular dependence related to 
the presence of spin. Spin changes the spatial shape of the cloud; the surfaces of 
constant energy density are no longer spherical-they are now spheroids characterized 
by the equation 

A ( x 2 + y 2 + z 2 ) + B z 2 =  ( X ~ + ~ ~ + Z ~ ) ~ ’ ~ .  

In this frame, spin has only a z component. It is the coefficient B that deforms the 
sphere. 

3. The angular momentum density 

The quantum field theoretical method we have applied to find the energy density 
permits us to make some generalizations. In the course of the calculation in section 2 
we have found very useful objects Z!-’”(x, y )  which can now constitute a starting point 
for evaluating another quantity characterizing the virtual cloud-the density of the 
angular momentum associated with electromagnetic field: ( l l r  x ( E ( r ,  t )  x B( r ,  t ) ) l l ) .  
The fact that inside the cloud there is energy flux, and angular momentum connected 
with it, is exclusively a result of the presence of spin, and in the model ( 2 )  this quantity 
is exactly zero. The experience acquired with the energy density calculation permits 
us now to find ( 1 J r  x ( E ( r ,  t )  x B( r ,  t ) ) l l )  without any problems. It requires only a good 
deal of patience (similarly as for (EZ + B 2 ) )  while acting with a large number of different 
terms coming from the multipolar expansion and from the differentiations giving E 
and B. We give, therefore, only the final result: 

1 
( ( r  x ( E ( r )  = B ( r ) ) ) , )  

The sum occurring above may only have the following structure: 

The first two terms, symmetric in i and k, cancel in (41) (this is why we would get 
zero for the spherically symmetric atom) and the only contribution comes from the 
third term. That means that the angular momentum density can only have a Le 
component, where 8 is the angle between the direction of the spin (the z axis) and 
the observation point r. It assumes its largest value on the equator and vanishes at the 
poles of the atom. It looks as though the cloud ‘rotates’ around the spin axis. 
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4. The electron self-interaction kernel 

In this section, starting again from the object I+’(x, y )  (or more exactly I fy(x ,  y ) )  we 
will find one more object which gives an insight into the virtual cloud-the total energy 
stored up. Yet we will not be interested here in a concrete number as a result of the 
integration, but rather in the structure of the expression without carrying out the 
integrals over the spatial distribution of the source. We will then have to calculate the 
integral 5 d3r $( 11E2( r )  + B2( r)i 1) over all space-inside the atom as well-which means 
that now we cannot make use of any approximation, not only that of the wave zone 
but the multipolar expansion either. We have therefore to handle full expressions of 
the type (21), which after having executed the integral over k are already pretty 
complicated. In the calculations in question only self-interaction of the electron is 
considered (If”). Taking into account of all the terms (I?,’ and Z r I y  too) would 
immediately lead to infinity because of the point-like nature of the proton. The 
calculations are long and laborious. The simplest way is to first find the integral 
J d3x I?”(xo, x; y o ,  x) without taking derivatives leading to E and B. These may be 
taken later as derivatives over w and z by virtue of the fact that Zp”(x, y )  depends on 
x and y only through combinations / x  - wI and ly - z / .  However, the integral 5 d3x If”” 
is infinite. It becomes well defined only after taking the derivatives over w and z (or 
x and y). On the other hand, the performing of these derivatives complicates the 
expression very much. We proceed, therefore, another way. Before moving operators 
d/dw’, d/dz‘ from under the integral j d3x, we regularize it by adding a term 

exp[-&(lx - w / +  ly - z1)l. 

Now, without executing the k integral in (21) we calculate 

exp[(ik- - E ) ( ~ X -  w l + l x - z l )  
I =  d3x (43) j Ix - WI /x  - zl  

We shift the integration variable: x + x + w and the expression (43) depends now on 
only one external vector ( 5  = w - z) which we choose as the direction of the third axis 
for integration in polar coordinates. Taking the easy integral over C#J and introducing 
a new variable t = J x 2 +  5’+2x5 cos 0 (in the place of e), we finally get 

- 2 n  
ik--E I=- - - -  exp[(ik-E)(]. (44) 

For regularized I?” that means: 

j ~ ~ X K Y X ~ ,  x; yo,  

exp[ik(xo-yo)] exp(iklw-xJ) exp(-iklw-zl) 
k + % ,  ( k + i &  k-iE 

+ x lom dk 
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Now we can perform the differentiations and remove the regularization parameter 
E. Gathering everything together, we come to 

1 d3x($E2(x)) 

The above expressions have, as expected, the form SSJKJ, where the J are the 
electron transition currents. The self-interaction kernel K is a complicated tensor (K"")  
expressed through integral functions; it is, however, very easy to pick up from it the 
Coulomb interaction which corresponds to the term n = 1 in the sum over the atomic 
states in (46) and the spin magnetic moment interaction in the same way from (47): 

where we have used f(0) = 7712 (f and g are functions defined already in (27) and 
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(28)). The formulae (46) and (47) show the complicated nature of the electron self- 
interaction even in the lowest order of perturbation expansion. The energy contained 
in the cloud is one of the important contributions to the Lamb shift. 

5. Summary 

In this work we have applied quantum field theoretical methods to the investigation 
of the virtual photon cloud surrounding a hydrogen atom in the ground state. This 
was possible thanks to reducing the problem of evaluating the average values $ ( E 2 )  
etc to the calculation of the transition amplitudes known from scattering theory. The 
formulae we have obtained in section 2 constitute a relativistic, bispinor generalization 
of those obtained earlier in the language of non-relativistic QED (Passante et al 1985, 
Passante and Power 1987, Persico and Power 1986). If we assume spherical symmetry 
of the atom, our results are identical to those of the quoted works. When we take into 
account the spin which spoils spherical symmetry, we find some angular distribution 
of the cloud. 

All our work seems to be much simpler than that of previous studies. The applied 
method of calculation has allowed us additionally to calculate the density of the angular 
momentum contained in the cloud. Both quantities, the energy density and the angular 
momentum density, have in the far zone the behaviour 1/ r’, which remains in agreement 
with calculations of van der Waals forces with retardation effects taken into account 
(Aub et al 1957, Casimir and Polder 1948, Power and Zienau 1957). In section 4 we 
have also found the self-interaction kernel for the electron bound in an atom. It is 
expressed through integral sine and cosine functions (contained in f and 8 ) .  

The field theoretical approach we have developed is, at least in principle, generaliz- 
able to other problems where virtual clouds come into play. In a forthcoming paper 
we will consider the application of field theoretic methods to the virtual cloud around 
an atom in an unstable state. 
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